Édition #41 du lundi 21 décembre 2020.


Pour les deux dernières éditions de 2020, je vous propose un top 10 des liens les plus populaires de l'année. La popularité est mesurée par le nombre de clicks.

Voici les positions 6 à 10. Le top 5 sera dévoilé la semaine prochaine.

Les événements à venir sont au bas de la newsletter comme d'habitude.

Bonne semaine, et joyeuses fêtes!

Félix


🏆 Lien le plus populaire la semaine dernière: MIT Sloan Management Review: The Data Problem Stalling AI


Positions 6-10 du top 10 des articles/nouvelles/annonces de 2020

#10

Top 20 Data Science YouTube Channels you should subscribe to in 2020
Here are the best YouTubers you should follow to learn about programming, Machine learning and AI, mathematics and Data Science.


#9

The Role of a Chief Data Officer Explained
As data becomes more important in the business world, responsibility for how it’s collected, managed and used increasingly lands on the CDO.


#8

Writing Clean Code for Data Scientists
Data scientists often struggle with this when they first start coding, or even if they’ve been coding for years in more research or academic setting. When you’re working in the industry, your code could potentially be used in production.


#7

How to Build Advanced SQL
The point is, SQL is worth knowing. But once you know the basics, how do you progress? What takes a SQL user from novice to advanced?


#6

Harvard Business Review: Why IT Fumbles Analytics
In their quest to extract insights from the massive amounts of data now available from internal and external sources, many companies are spending heavily on IT tools and hiring data scientists. Yet most are struggling to achieve a worthwhile return. That’s because they treat their big data and analytics projects the same way they treat all IT projects, not realizing that the two are completely different animals.


Événements

Meetup: Progress of AI in Healthcare: What are AI Companies Doing Now
Monday 21 December 2020 @ 13:00
We are happy to announce that we will have a webinar series of 3 episodes on progress in AI, with a focus on a different sector in each one. In this first episode, you will learn more about AI progress and research in the medical sector to improve patient outcomes.


Webinar: Building Great Machine Learning Products
Tuesday 22 December 2020 @ 14:30
Speaker: Sam Stone, Head of Product for the Pricing Group at Opendoor
This will be an informal chat about what it's like to use Machine Learning for a company. It'll cover the different ways they can be implemented within an organization and we'll also touch on some of the misconceptions that come with using Machine Learning


AI DEBATE #2: Moving AI Forward: An Interdisciplinary Approach
Wednesday 23 December 2020 @ 16:00
Confirmed speakers for an interdisciplinary approach to advance AI:
- Daniel Kahneman, Nobel Prize in Economic Sciences for pioneering work on decision making.
- Fei-Fei Li, Professor at the Computer Science Department of Stanford University
- Judea Pearl, Winner of the Turing Award
- Richard Sutton, Distinguished Research Scientist, DeepMind Alberta. Professor, University of Alberta.
More TBA, with Gary Marcus as moderator and co-organizer (with Vincent Boucher).


Meetup: Montréal-Python 82 – Magnétisme Naturel
Monday 11 January 2021 @ 18:00
Venez célébrer une nouvelle année en apprenant sur Python. Au menu nous avons :
- Apprendre Python pour débutant avec Edith Viau
- Apprendre les sciences de données avec Khuyen Tran
- Module du Mois : Inspect avec Francis Vachon


Datavore
Tuesday 09 February 2021 @ 08:00
9-10 février 2021
Datavore, c’est un événement qui interpelle les passionnés de données qui en veulent toujours plus. Incontournable sur la scène de l’analytique au Québec depuis 14 ans, Datavore donne lieu à des apprentissages de toutes sortes: échanges sur les pratiques, partage d’expériences, rencontres fructueuses et nouvelles perspectives. L'édition 2021 sera 100% en ligne!