Édition #15 du lundi 25 mai 2020.
Bonne semaine!
Félix
🏆 Lien le plus populaire la semaine dernière: Data Science Reading List for May 2020
Articles, nouvelles et annonces
Uber: Monitoring Data Quality at Scale with Statistical Modeling
Good business decisions cannot be made with bad data. At Uber, we use aggregated and anonymized data to guide decision-making, ranging from financial planning to letting drivers know the best location for ride requests at a given time. But how can we ensure high quality for the data powering these decisions? Interruptions in the pipeline can introduce troublesome anomalies, such as missing rows or fields, and affect the data we rely on for future decisions.
Meet ScrAPIr, MIT's Swiss army-knife for non-coders to shake data out of APIs
Boffins at MIT's Computer Science & Artificial Intelligence Laboratory (CSAIL) have developed a tool called ScrAPIr to help simplify access to online data available through application programming interfaces, or APIs.
Plotly: Introducing JupyterDash
We’re excited to announce the release of JupyterDash, our new library that makes it easy to build Dash apps from Jupyter environments (e.g. classic Notebook, JupyterLab, Visual Studio Code notebooks, nteract, PyCharm notebooks, etc.). Dash is Plotly’s open source Python (and R and Julia!) framework for building full stack analytic web applications using pure Python (no JavaScript required).
Databricks: New Pandas UDFs and Python Type Hints in the Upcoming Release of Apache Spark 3.0
This blog post introduces new Pandas UDFs with Python type hints, and the new Pandas Function APIs including grouped map, map, and co-grouped map.
OpenAI releases Jukebox: a neural net that generates music
We’re introducing Jukebox, a neural net that generates music, including rudimentary singing, as raw audio in a variety of genres and artist styles. We’re releasing the model weights and code, along with a tool to explore the generated samples.
Getting started with Prophet, Facebook's open source time series forecasting library (in Python)
Introduced in 2017, Prophet is a forecasting library developed by Facebook, with implementations in R and Python. It was developed with two goals in mind: First, to create scalable, high-quality forecasts for the business, and second, to have a rigorous methodology behind the scenes, but have its parameter levers be intuitive enough for traditional business analysts to adjust.
Événements
[ONLINE] Predicting Customer Behavior with Amazon SageMaker Studio
Tuesday 26 May 2020 @ 14:00
Learn how you can leverage Amazon SageMaker Studio, a fully integrated development environment for ML in AWS, to easily and quickly build machine learning models under a convenient and intuitive single pane of glass. We’ll explore the Amazon SageMaker Studio service and discuss how the integrated visual interface manages workflow in order to build, train, and deploy machine learning models at scale.
[ONLINE] A Fireside Chat with Jerome Pesenti, Head of AI, Facebook
Tuesday 26 May 2020 @ 16:00
We're thrilled to welcome an incredible guest, Jerome Pesenti of Facebook, to an intimate hour-long fireside chat with FirstMark Partner and Data Driven NYC host, Matt Turck.
[ONLINE] Ville intelligente: données, connectivité, mobilité
Thursday 28 May 2020 @ 10:00
Element Ai, Innovée, Québec Innove, le CRSNG, la Fabrique des Mobilités, la COOP Carbone, Bciti, La ville de Brossard, UMRSU, Transpolis et le Réseau d’innovation en mobilité durable sont heureux de vous accueillir à ce webinaire. Le programme: “La gouvernance des données”, "Les données ouvertes et cas d’usage", “La plateforme de données Bciti” et “La ville laboratoire de mobilité urbaine Transpolis”.
[ONLINE] Dockercon Live 2020
Thursday 28 May 2020 @ 12:00
We’ve designed a 1-day conference that’s free and completely online. You’ll hear from speakers in live interviews with theCUBE, hang out with Docker experts in the live hallway track, and watch recorded sessions while chatting live with the speakers.
Webinaire IVADO: Le secteur bancaire à l'ère de l'intelligence numérique
Thursday 28 May 2020 @ 13:30
Apprentissage automatique, recherche opérationnelle, science des données ont le vent en poupe. Quels sont leurs atouts dans la transformation du secteur bancaire ? Rendez-vous le jeudi 28 mai à 13h30 avec Manuel Morales, professeur à l'université de Montréal et directeur du réseau Fin-ML pour une mise en perspective des promesses et défis !
[ONLINE] Meetup Montréal-Python 77 – Serinette Harmonieuse
Monday 01 June 2020 @ 17:00
On est de retour avec une autre rencontre spectaculairement virtuelle. Le présentations seront diffusées en direct sur Youtube avec périodes de questions sur Slack. On est toujours à la recherche de présentateur.trice.s. Faites-nous signe si vous voulez faire partie du programme.